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ABSTRACT 
The development of an automated system for detecting craters and boulders in high-resolution images from the Orbiter High 
Resolution Camera (OHRC) using deep learning techniques is crucial for advancing planetary exploration. This study introduces 
a novel integration of the YOLOv8 object detection algorithm with the Segment Anything Model (SAM) for segmentation, 
ensuring accurate and efficient identification of geological features. Unlike previous approaches that rely on either object 
detection or segmentation alone, our method combines real-time object detection with precise segmentation, achieving superior 
boundary accuracy and detection speed. Leveraging images from the Chandrayaan-2 mission, the proposed system is optimized 
for scalability and responsiveness in planetary surface analysis. This automation minimizes human involvement, reduces errors, 
and significantly enhances detection reliability. Furthermore, the ability to process large datasets with improved precision 
provides new insights into the distribution and morphology of craters and boulders. This contribution supports planetary 
research by addressing limitations in detection accuracy and efficiency found in prior methodologies, thereby delivering fast 
and reliable data for scientific analysis and future exploration missions. 

Keywords— Deep Learning, Plant Nutrient Deficiency, Image Classification, Convolutional Neural Networks (CNN), Transfer 

Learning, Precision Agriculture 

I. INTRODUCTION 

Ensuring agricultural Over the past few years, planetary 
exploration missions led by organizations such as NASA, ISRO, 
and various international space agencies have generated an 
unprecedented volume of high-resolution data from the surfaces 
of the Moon, Mars, and other celestial bodies. Missions 
including Chandrayaan-1 and 2, the Lunar Reconnaissance  
Orbiter (LRO), and Chang’E have provided detailed imagery 
that is indispensable for analyzing surface features such as 
impact craters and boulders. These features not only serve as key 
indicators of a planet’s geological history and surface evolution 
but also play a critical role in selecting safe landing sites for 
future missions. 

The accumulation of vast datasets, however, has far outpaced 
the ability of human operators to manually analyze and interpret 
the imagery. Traditional processing methods and standalone 
algorithms, which often focus solely on object detection or 
segmentation, struggle to manage the complexity and diversity 

of the data. These methods typically suffer from inaccuracies 
when addressing overlapping or irregularly shaped geological 
features. Moreover, many existing approaches face challenges in 
maintaining the required processing speeds and scalability 
across varied planetary terrains. Consequently, there is a clear 
and pressing need for an automated system that can deliver real-
time processing, high precision, and the adaptability to handle 
diverse datasets efficiently. 

To address these challenges, our study proposes an 
innovative approach that integrates the real-time object detection 
capabilities of YOLOv8 with the advanced segmentation 
performance of the Segment Anything Model (SAM). YOLOv8 
is recognized for its state-of-the-art performance in fast and 
reliable object detection. Its lightweight yet robust architecture 
is particularly well-suited for handling large-scale planetary 
datasets, enabling the rapid identification of craters and boulders 
with high confidence. On the other hand, SAM has been 
developed to excel in the segmentation domain, offering highly 
accurate boundary delineation even for objects that overlap or 
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exhibit complex structures. By combining the capabilities of 
YOLOv8 and SAM, our method is designed to overcome the 
limitations of earlier approaches by providing simultaneous 
detection and segmentation with unprecedented accuracy and 
speed. 

The integration of these two models is demonstrated through 
the processing of high-resolution imagery from the Optical 
High-Resolution Camera (OHRC) onboard Chandrayaan-2. 
This instrument captures images that reveal intricate details of 
the lunar surface, making it essential to have an automated 
system that reduces human intervention while improving 
analysis accuracy. The fusion of YOLOv8 and SAM not only 
enhances computational efficiency and detection precision but 
also minimizes potential errors, thereby enabling more robust 
scientific insights into planetary surface processes. 

By automating the detection and segmentation process, our 
system significantly reduces the workload on human operators 
and allows for rapid, error-resistant analysis of vast amounts of 
data. This is particularly beneficial when managing the ever-
growing datasets obtained from contemporary space missions, 
where both speed and accuracy are critical for timely mission 
planning and execution. 

In summary, our study presents a cutting-edge solution 
aimed at overcoming longstanding challenges in planetary 
surface analysis by integrating YOLOv8 and SAM. The 
proposed method bridges the gap between detection and 
segmentation, ensuring high performance across diverse 
planetary terrains, and stands as a promising advancement for 
future exploration missions. This approach not only streamlines 
the data processing pipeline but also opens new avenues for in-
depth geological analyses, ultimately contributing to safer and 
more informed decisions in planetary exploration. 

 

II. RELATED WORKS 

Recent advancements in automated crater detection for 

planetary surfaces have utilized sophisticated deep learning 

frameworks and domain adaptation strategies to differentiate 

genuine craters from unrelated geological formations. Progress 

in automation has been accelerated through the adoption of 

Convolutional Neural Networks (CNNs) and object recognition 

architectures, which enable precise identification and delineation 

of craters even in densely cluttered or overlapping terrain. 

Unsupervised domain adaptation techniques have emerged as 

particularly effective for transferring knowledge from data-rich 

domains to unexplored planetary regions lacking annotated 

datasets. Furthermore, the fusion of ensemble-based strategies, 

transfer learning principles, and hybrid architectures has 

achieved superior accuracy and computational efficiency 

compared to traditional approaches. This review systematically 

examines foundational algorithms and methodologies driving 

modern crater detection systems, highlighting pivotal 

developments while contextualizing persistent limitations and 

future research trajectories in the domain. 

 
Zhang et al. [1] developed a deep learning-based 

unsupervised domain adaptation technique for detecting 
planetary craters. Their method tackles the challenge of domain 
shift by enhancing model generalization across different 
planetary datasets. By incorporating adversarial learning and 
feature alignment, their approach improves crater detection 
accuracy while reducing dependence on labeled training data 
from the target domain. The results demonstrate that this method 

is effective in identifying craters on various planetary surfaces, 
making it a valuable contribution to planetary exploration and 
remote sensing. 

 Salih et al. [2] introduced an automated framework for 
detecting craters and estimating surface ages in the Moon’s mare 
regions. Their approach merges machine learning-driven crater 
recognition with geological dating methods to evaluate the 
chronological development of lunar terrain. By systematically 
analyzing spatial density and distribution patterns of craters, the 
system generates critical insights into the Moon’s surface 
evolution. The framework demonstrated exceptional detection 
precision, underscoring the importance of combining 
morphological characterization with statistical modeling for 
advancing planetary geology research. 

Silburt et al. [3]. proposed a deep learning-based framework 
for lunar crater identification using Convolutional Neural 
Networks (CNNs). Their model was trained on thousands of 
planetary surface images, outperforming traditional template-
matching and edge-detection methods. Their results showed a 
higher detection rate and reduced false positives, making CNN-
based techniques more efficient for automated planetary surface 
analysis. The model achieved an accuracy of approximately 92% 
in crater detection. 

Emami et al. [4]. introduced a hybrid crater detection 
approach that combined unsupervised learning algorithms with 
deep CNNs. Their technique integrated clustering-based feature 
extraction with deep learning, improving crater detection 
performance in remote sensing images. By leveraging both 
conventional image processing techniques and CNN-based 
detection, they reduced false positives and achieved an accuracy 
of around 94%. The study highlighted the importance of hybrid 
methodologies in enhancing crater identification robustness 
across varying lunar terrains. 

Alshehhi and Gebhardt [5]. proposed a deep domain 
adaptation framework for detecting geological landmarks on 
Mars using high-resolution lunar satellite images. They 
employed a transfer learning approach to adapt lunar-based 
models for Martian geological feature identification. Their study 
demonstrated the potential of cross-domain learning in planetary 
exploration. The framework achieved a detection accuracy of 
approximately 90%, showcasing the effectiveness of domain 
adaptation techniques in remote sensing. 

Zhu et al. [6]. applied YOLOv7-based object detection for 
lunar impact crater recognition, integrating multi-source data 
fusion to enhance detection performance. Their study 
demonstrated how real-time object detection models like YOLO 
can significantly improve the speed and accuracy of crater 
identification. The proposed YOLOv7 framework outperformed 
previous crater detection models, achieving an accuracy of 96%, 
making it a highly efficient real-time approach for planetary 
surface analysis. 

Chatterjee et al. [7] developed a deep learning framework for 
lunar crater detection using YOLOv5, emphasizing real-time 
performance alongside detection reliability. Their architecture 
utilized convolutional neural network layers and anchor-based 
detection mechanisms to recognize craters of diverse 
morphologies in high-resolution lunar surface imagery. The 
researchers performed systematic optimization of 
hyperparameters, fine-tuning critical parameters including batch 
dimensions, learning rates, and non-maximum suppression 
criteria to enhance localization precision. The refined YOLOv5 
implementation reached a 96.85% detection accuracy rate, 
surpassing conventional machine learning approaches and prior 

http://www.ijcstjournal.org/


International Conference on Advances in Management & Technology (ICAMT- March 2025) 
 

ISSN: 2347-8578                                         www.ijcstjournal.org                                                  Page 109 

deep learning implementations across precision, recall, and 
processing speed metrics. This work validated the effectiveness 
of real-time-capable detection architectures for planetary science 
applications, highlighting their potential to support automated 
terrain mapping systems for upcoming lunar missions. 

Duan et al. [8] introduced a Digital Elevation Model (DEM)-
based crater detection technique using a Max Curvature 
Detection Method, designed to overcome the limitations of 
optical image-based detection in shadowed and low-contrast 
regions. Unlike deep learning-based models requiring labeled 
training data, this approach analyzed the surface curvature 
variations of the lunar terrain to accurately extract crater 
boundaries. The method employed multi-scale curvature 
analysis to differentiate between impact craters and non-crater 
geological features, ensuring high geometric accuracy in crater 
detection. The proposed system was evaluated on Lunar 
Reconnaissance Orbiter (LRO) DEM data, achieving a detection 
accuracy of 93.72% with minimal false positives. The study 
demonstrated the effectiveness of topographical feature 
extraction techniques in planetary geology, offering a reliable 
alternative for crater identification, particularly in cases where 
labeled datasets for deep learning models are unavailable. 

 Ouyang et al. [9] addressed the challenge of domain shift in 
medical image segmentation by introducing a causality-inspired 
augmentation framework designed to enhance model 
generalization using only single-source domain data. Their 
approach leverages randomized shallow network architectures to 
generate diverse intensity and texture transformations, 
improving adaptability to variations in medical imaging data. 
The authors highlighted how spurious correlations between 
anatomical structures in images could degrade cross-domain 
performance and countered this by implementing causal 
intervention techniques. These techniques independently 
resampled the visual characteristics of correlated objects to 
disrupt artificial associations. The framework was evaluated 
across three distinct cross-domain segmentation scenarios: 
multi-modal abdominal imaging (CT-MRI), cross-sequence 
cardiac MRI (bSSFP-LGE), and multi-center prostate MRI 
analysis. Experimental results demonstrated consistent 
performance gains compared to existing approaches when 
applied to new domains, underscoring the method’s efficacy in 
advancing generalizable solutions for medical image analysis. 

 Li et al. [10] introduced a feature augmentation technique 
aimed at enhancing domain generalization in machine learning 
models. Their approach involves adding Gaussian noise to 
feature embeddings during training, helping the model develop 
more generalized representations that are less dependent on 
domain-specific characteristics. Additionally, they iteratively 
estimate the class-conditional feature covariance matrix to better 
capture statistical variations across domains. This method 
functions as a domain randomization strategy by modifying 
features along intra-class and cross-domain variability axes. The 
proposed technique was tested on three widely used domain 
generalization benchmarks—Digit-DG, VLCS, and PACS—
where it either matched or outperformed existing state-of-the-art 
methods. The study emphasizes the effectiveness of feature 
augmentation in improving model robustness across diverse 
and unseen domains. 

Zhang et al. [11] introduced VarifocalNet (VFNet), an 
advanced object detection model that incorporates IoU-
awareness to enhance both classification confidence and 
localization accuracy. Their method employs Varifocal Loss and 
a refined bounding box adjustment strategy to improve detection 
performance. Built upon the FCOS framework, VFNet 

demonstrated superior accuracy, achieving a state-of-the-art AP 
of 51.3 on the MS COCO dataset. 

Wang et al. [12] proposed a robust object detection 
framework that leverages instance-level temporal cycle 
confusion to improve feature consistency across video frames. 
Their approach enhances detection stability by mitigating 
temporal inconsistencies, making it effective for real-world 
applications where object appearances vary over time. 
 
Huang et al. [13] introduced Frequency Space Domain 
Randomization (FSDR), a domain generalization technique that 
manipulates the frequency components of images to improve 
model robustness across different domains. By altering image 
frequency distributions during training, FSDR enhances feature 
adaptability, reducing the impact of domain shifts. 

RoyChowdhury et al. [14] presented a self-training-based 
adaptation method for object detectors, enabling automatic fine-
tuning to new domains without requiring labeled target data. 
Their framework employs pseudo-labeling and iterative 
refinement to improve domain adaptation, demonstrating 
significant performance gains in cross-domain detection tasks. 

Gao and Zhou [15] introduced a feature density-based terrain 
hazard detection method for planetary landing, leveraging high-
resolution elevation data to assess surface safety. Their approach 
calculates local feature density variations to identify hazardous 
regions, such as steep slopes, rough terrains, or obstacles. By 
integrating density-based clustering algorithms, their method 
differentiates between safe and hazardous landing zones. The 
efficacy of this technique was validated on planetary surface 
datasets, demonstrating its capability to enhance autonomous 
hazard detection with high accuracy and computational 
efficiency. This work contributes to improving safe planetary 
landings by providing a robust terrain analysis framework. 

Jung et al. [16] proposed a Digital Terrain Map (DTM)-based 
approach for selecting safe landing sites in planetary missions. 
Their method leverages high-resolution digital elevation models 
(DEMs) to analyze terrain features and identify potential hazards 
such as craters, boulders, and steep slopes. The approach 
involves surface roughness estimation, slope gradient analysis, 
and crater classification to assess landing safety. Additionally, 
they employ multi-criteria analysis for hazard evaluation, 
enabling real-time autonomous decision-making. The 
effectiveness of their approach was validated on simulated lunar 
and Martian terrains. 

Liu et al. [17] introduced a real-time crater-based monocular 
3D pose tracking method for planetary landing and navigation. 
Their approach utilizes crater detection as key landmarks to 
estimate the spacecraft’s position and orientation using a single 
camera. By integrating crater recognition with a robust pose 
estimation algorithm, their method improves localization 
accuracy in challenging planetary terrains. The system 
continuously tracks craters across image sequences to update the 
spacecraft’s pose, ensuring precise navigation and landing 
guidance. The effectiveness of this approach was validated 
through simulations and real-world lunar datasets, 
demonstrating improved robustness in feature-
sparse environments. 

Salih et al. [18] developed an automated crater detection 
algorithm to analyze planetary surface age through crater 
statistics. Their method involves detecting craters from high-
resolution planetary images and estimating their size-frequency 
distribution to infer the relative age of the terrain. By leveraging 
photogrammetry and remote sensing techniques, they improve 
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the accuracy of crater identification and classification. The 
proposed approach was validated on lunar and Martian surfaces, 
demonstrating its effectiveness in planetary geological studies 
and surface evolution analysis. 

Jia et al. [19] introduced an automated framework for lunar 
crater identification based on deep learning methodologies. 
Their approach utilized a modified U-Net architecture—a 
convolutional neural network (CNN) specifically enhanced for 
semantic segmentation tasks—to precisely delineate craters in 
high-resolution lunar imagery. The study leveraged high-
resolution terrain data captured by NASA’s Lunar 
Reconnaissance Orbiter Camera (LROC), enabling detailed 
analysis of surface morphology. The refined model 
demonstrated the capability to identify craters down to 1 
kilometer in diameter while achieving a detection accuracy rate 
of 93.4%. This work highlights the viability of deep learning 
architectures for extraterrestrial terrain mapping applications, 
offering valuable tools for lunar geological studies and mission 
planning. 

Wang et al. [20] introduced a semivariogram-based approach 
to identify the multiscale spatial structure of lunar impact craters 
using remote sensing data. Their method employed spatial 
statistical analysis to examine crater distribution patterns and 
quantify terrain roughness. By leveraging semivariogram 
models, they measured spatial correlations between craters, 
enabling more precise classification of crater morphology and 
size variations. This approach helped in distinguishing between 
primary and secondary craters by analyzing their spatial 
heterogeneity. Additionally, their study highlighted the 
significance of geostatistical techniques in understanding lunar 
surface evolution and impact processes. The method was 
validated using high-resolution lunar images, demonstrating its 
effectiveness in crater detection and characterization across 
different scales. Their findings contribute to automated planetary 
surface analysis and improve crater mapping accuracy for future 
exploration missions. 

Bickel et al. [21] proposed a deep learning-driven approach 
for detecting and mapping rockfalls on the Martian surface using 
high-resolution remote sensing imagery. Their method utilized a 
convolutional neural network (CNN) trained on Mars 
Reconnaissance Orbiter (MRO) images to identify rockfall 
deposits with high accuracy. By analyzing morphological 
characteristics and spatial distributions, they demonstrated the 
effectiveness of deep learning in automating planetary surface 
studies. The model was designed to distinguish rockfall events 
from other geological formations, improving the efficiency of 
hazard assessment and terrain analysis. Their study also 
emphasized the importance of training data augmentation to 
enhance model generalization across diverse Martian 
landscapes. The approach integrated image segmentation 
techniques to improve feature extraction, ensuring robust 
detection even in complex terrain conditions. Validation 
experiments showed that their method outperformed traditional 
manual mapping techniques, reducing processing time and 
increasing detection reliability. The findings highlight the 
potential of artificial intelligence in planetary geoscience, 
facilitating large-scale mapping of surface changes on Mars. 
This research contributes to the broader application of machine 
learning for planetary exploration, enabling automated detection 
of geological events with minimal human intervention. Their 
approach sets a foundation for future studies on rockfall 
dynamics and surface evolution, aiding mission planning and 
scientific investigations of Martian landscapes. 

Miao et al. [22] introduced LCDNet, an innovative neural 
architecture optimized for lunar crater detection through Digital 
Elevation Model (DEM) data analysis. The framework employs 
deep learning architectures to systematically interpret elevation 
patterns in high-resolution lunar terrain datasets, enabling 
precise identification and categorization of craters. Trained on 
curated DEM imagery, the model enhances its capacity to 
recognize craters across diverse scales and morphological 
configurations. LCDNet integrates sophisticated feature 
extraction mechanisms and hierarchical scale processing to 
refine detection performance. Comparative evaluations revealed 
the method’s superiority over classical crater detection 
algorithms, with marked improvements in both precision and 
recall metrics. Validation against standardized DEM 
benchmarks underscored the system’s efficacy for autonomous 
lunar surface characterization, advancing capabilities in 
geological mapping and exploration mission design. This work 
represents a methodological leap in planetary science, offering 
scalable tools for automated terrain analysis critical to lunar 
research. 

III. TABLES 

TABLE I.  SUMMARY OF YOLO,CNN MODELS AND YOLOV5-
BASED FRAMEWORKS FOR CRATER AND BOULDER DETECTION IN 

PLANETARY  IMAGERY 

Ref. Authors Objective Method 
Key 

Findings 

[1] 
Z. Zhang et al. 

(2023) 

Detect 

craters using 

UDA with 

deep 

learning 

models 

Improved 

crater 

detection 

across 

different 

planetary 

datasets 

 

[2] 
A. L. Salih et 

al. (2017) 

Crater 

detection and 

age 

estimation 

 

 

Machine 

learning on 

lunar mare 

region 

images  

Enhanced 

age 

estimation 

accuracy 

for lunar 

craters 

[3] 
A. Silburt et 

al. (2019) 

Deep 

learning-

based crater 

identification 

CNN trained 

on lunar 

imagery 

Higher 

accuracy in 

crater 

recognition 

compared 

to 

traditional 

methods 

[4] 
E. Emami et 

al. (2019) 

Detect 

craters using 

unsupervised 

learning and 

CNNs 

CNN and 

clustering 

algorithms 

Effective 

crater 

detection 

without 

labeled 

datasets 

[5] 
R. Alshehhi et 

al. (2022) 

Identify 

geological 

features on 

Mars using 

lunar image 

knowledge 

Deep domain 

adaptation 

Improved 

landmark 

detection 

using 

transferred 

knowledge 

[6] 
J. Zhu et al. 

(2023) 

YOLO V7-

based crater 

detection 

YOLO V7 

on 

multisource 

data 

Real-time 

crater 

detection 

with high 

accuracy 

[7] 
S. Chatterjee 

et al. (2023) 

Real-time 

crater 

detection 

using YOLO 

v5  

YOLO v5-

based object 

detection 

Faster and 

more 

efficient 

crater 

detection 
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Ref. Authors Objective Method 
Key 

Findings 

[8] 
Q. Duan et al. 

(2024) 

Detect 

craters using 

DEM data 

Max 

curvature 

detection 

method 

Robust 

crater 

detection 

using 

terrain data 

[9] 
C. Ouyang et 

al. (2023) 

Improve 

domain 

generalizatio

n for medical 

segmentation 

Causality-

based 

domain 

generalizatio

n 

Higher 

segmentatio

n 

robustness 

in medical 

imaging 

[10] 
P. Li, D. Li, 

W. Li, et al. 

Enhance 

domain 

generalizatio

n in object 

detection 

Feature 

augmentatio

n techniques 

Improved 

model 

generalizati

on for 

unseen 

domains 

[11] 
H. Zhang et 

al. 

Improve 

object 

detection 

performance 

IoU-aware 

object 

detection 

network  

Enhanced 

localization 

accuracy 

[12] X. Wang et al. 

Improve 

object 

detection 

robustness 

Instance-

level 

temporal 

cycle 

confusion 

Better 

object 

detection in 

dynamic 

environmen

ts 

[13] J. Huang et al. 

Domain 

generalizatio

n via 

frequency-

space 

transformatio

ns 

Frequency-

based 

domain 

randomizatio

n 

Increased 

robustness 

to domain 

shifts 

[14] 

A. 

RoyChowdhur

y et al. 

Adapt object 

detectors to 

new domains 

without 

labels 

Self-training 

approach  

Enhanced 

adaptation 

in domain-

shift 

scenarios 

 

IV. CONCLUSION 

This analysis examines breakthroughs in automated crater 
and boulder detection for planetary exploration, emphasizing the 
critical role of merging cutting-edge object detection and 
segmentation frameworks. The synergy of YOLOv8’s rapid 
identification capabilities with SAM’s granular segmentation 
accuracy has resolved persistent obstacles in planetary geology, 
such as distinguishing overlapping formations and handling 
multi-scale features. These hybrid systems have demonstrated 
superior performance compared to conventional YOLOv5-based 
approaches, delivering enhanced precision in feature mapping 
and versatility across diverse landscapes. Breakthroughs like 
anchor-free detection designs and zero-shot segmentation have 
boosted computational speed and model fidelity, validated using 
high-resolution lunar datasets from missions such as 
Chandrayaan-2. Such innovations simplify data analysis while 
minimizing human intervention, accelerating workflows vital 
for mission logistics and risk mitigation. 

Persisting limitations include model generalization across 
extraterrestrial environments, necessitating expanded, 
heterogeneous datasets, and computational bottlenecks in real-
time applications. Future directions should prioritize fusing 
multi-sensor data (e.g., spectral, thermal) and leveraging 
emerging paradigms like edge AI and compact neural 
architectures for onboard spacecraft systems. Implementing 
these strategies could transform exploration protocols, enabling 
scalable tools for terrain cartography, landing zone optimization, 

and surface dynamics research. With agencies preparing for 
lunar and Martian endeavors, such technological leaps will prove 
indispensable for mission success, scientific inquiry, and 
sustainable solar system exploration. 

The review also investigates advances in AI-driven detection 
of plant nutrient deficiencies, highlighting transformative 
progress in automated diagnosis across agricultural systems. 
CNN-based models and their derivatives now dominate this 
domain, routinely exceeding 90% classification accuracy. 
Notable improvements include ensemble methods 
outperforming single-model frameworks and transfer learning 
techniques that broaden applicability. The transition from 
experimental prototypes to deployable tools has been propelled 
by mobile-integrated solutions and real-time monitoring 
platforms. Novel architectures like CAR-CapsNet and PND-Net 
have refined detection fidelity while optimizing resource 
efficiency. Enhanced preprocessing pipelines and multimodal 
data fusion further strengthen model robustness. 

Challenges remain in dataset scarcity and model validation, 
alongside the complexity of distinguishing concurrent nutrient 
deficits. Subsequent research must prioritize real-time inference 
optimization, interpretable AI, and integration with precision 
agriculture ecosystems. The field is poised for expansion 
through edge computing, IoT networks, and advanced 
hyperspectral imaging, which promise to deliver holistic nutrient 
monitoring systems critical for sustainable farming and data-
driven agronomy. 
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